Biodiverzita: Porovnání verzí

Skočit na navigaci Skočit na vyhledávání
Přidáno 178 bajtů ,  4. 3. 2011
+ odkazy
Bez shrnutí editace
(+ odkazy)
Řádek 11: Řádek 11:


Fyzikální a chemické podmínky v této vrstvě jsou neuvěřitelně stabilní. Na tom mají zásluhu:
Fyzikální a chemické podmínky v této vrstvě jsou neuvěřitelně stabilní. Na tom mají zásluhu:
*kosmologické podmínky (stálý zářivý výkon Slunce, stálá oběžná dráha Země)
*kosmologické podmínky (stálý zářivý výkon [[w:Slunce|Slunce]], stálá oběžná dráha Země),
*výskyt tekuté vody zejména v oceánech
*výskyt tekuté vody zejména v oceánech,
*před účinky elektricky nabitých částic kosmického záření a zejména tzv. slunečního větru je povrch Země chráněn geomagnetickým polem, které má charakter dipólu s magnetickou osou mírně skloněnou k ose rotace
*před účinky elektricky nabitých částic kosmického záření a zejména tzv. slunečního větru je povrch Země chráněn [[w:Magnetické pole Země|geomagnetickým polem]], které má charakter dipólu s magnetickou osou mírně skloněnou k ose rotace,
*průměrná teplota zemského povrchu, která činí v současné době + 15<sup>o</sup> C, což je zhruba o 30<sup>o</sup> C více, než kolik by měla planeta v téže poloze vůči Slunci, ale bez zemské atmosféry. Rozdíl je dán tzv. skleníkovým efektem. Protože hlavními skleníkovými plyny jsou vodní pára, oxid uhličitý a metan, je tento faktor spjat s existencí života na Zemi
*průměrná teplota zemského povrchu, která činí v současné době + 15<sup>o</sup> C, což je zhruba o 30<sup>o</sup> C více, než kolik by měla planeta v téže poloze vůči Slunci, ale bez zemské atmosféry. Rozdíl je dán tzv. skleníkovým efektem. Protože hlavními skleníkovými plyny jsou vodní pára, oxid uhličitý a metan, je tento faktor spjat s existencí života na Zemi,
*ozónová vrstva brání přístupu život nebezpečnému ultrafialovému záření Slunce až na zemský povrch. Existence ozonové vrstvy úzce souvisí s výskytem kyslíku v zemské atmosféře. Ještě před 700 miliony let bylo kyslíku v zemské atmosféře tak málo, že ozonová vrstva neměla z čeho vznikat. V době, kdy ozonová vrstva neexistovala, byl život na Zemi omezen na hlubší pásma v mořích a jezerech (voda totiž ultrafialové záření vydatně pohlcuje)
*[[w:ozonová vrstva|ozonová vrstva]] brání přístupu život nebezpečnému ultrafialovému záření Slunce až na zemský povrch. Existence ozonové vrstvy úzce souvisí s výskytem kyslíku v zemské atmosféře. Ještě před 700 miliony let bylo kyslíku v zemské atmosféře tak málo, že ozonová vrstva neměla z čeho vznikat. V době, kdy ozonová vrstva neexistovala, byl život na Zemi omezen na hlubší pásma v mořích a jezerech (voda totiž ultrafialové záření vydatně pohlcuje),
*dosud nejdelší homeostatický cyklus na Zemi objevili geologové teprve nedávno. Růst zastoupení oxidu uhličitého v atmosféře znamená zvýšení velikosti skleníkového efektu, a tedy celkové oteplení Země. Tím se zvyšuje výpar vody z řek, jezer a především oceánů, což má za následek mocnější dešťové srážky. Vodní kapičky vymývají oxid uhličitý z atmosféry, a ten je na povrchu oceánů dychtivě pohlcován planktonem, který jej včleňuje do svých organismů. Když plankton hyne, padají jeho ostatky na oceánské dno, kde se oxid uhličitý zabuduje do vápence (CaCO<sub>3</sub>). Vlivem podsouvání litosférických desek se vápenec dostává skluzem přes zemskou kůru do vnějšího pláště až do hloubek, kde se taví magmatickým ohřevem. Prostřednictvím sopek se takto znovu uvolněný oxid uhličitý dostává zpět do zemské atmosféry a tak opět ovlivňuje velikost skleníkového efektu. Celý cyklus trvá zhruba půl miliardy let Grygar J. (2004).
*dosud nejdelší homeostatický cyklus na Zemi objevili geologové teprve nedávno. Růst zastoupení [[w:oxid uhličitý|oxidu uhličitého]] v atmosféře znamená zvýšení velikosti [[skleníkový jev|skleníkového efektu]], a tedy celkové oteplení Země. Tím se zvyšuje výpar vody z řek, jezer a především oceánů, což má za následek mocnější dešťové srážky. Vodní kapičky vymývají oxid uhličitý z atmosféry, a ten je na povrchu oceánů dychtivě pohlcován [[w:plankton|planktonem]], který jej včleňuje do svých organismů. Když plankton hyne, padají jeho ostatky na oceánské dno, kde se oxid uhličitý zabuduje do [[w:vápenec|vápence]] (CaCO<sub>3</sub>). Vlivem podsouvání [[w:tektonická deska|litosférických desek]] se vápenec dostává skluzem přes [[w:zemská kůra|zemskou kůru]] do vnějšího pláště až do hloubek, kde se taví magmatickým ohřevem. Prostřednictvím sopek se takto znovu uvolněný oxid uhličitý dostává zpět do zemské atmosféry a tak opět ovlivňuje velikost skleníkového efektu. Celý cyklus trvá zhruba půl miliardy let<ref>Grygar J. (2004): Kosmické katastrofy. Stabilita životního prostředí na Zemi. Přednáška proslovená v cyklu "Otázky a názory" dne 6. prosince 1994 na ČVUT v Praze. In: Věda a víra,  ALDEBARAN, ISBN 80-903117-2-5.
</ref>.


Organismy aktivně pomáhají vytvářet stabilní podmínek pro svůj život (pozitivní zpětná vazba). Celoplanetární regulace je tak dosaženo srůstáním živé a neživé složky do jediného systému. Druhy a jejich prostředí se vyvíjejí ve vzájemné interakci; evoluce organismů je propojena s evolucí prostředí. Taková autoregulace života a prostředí Země vede k vytváření vědeckých teorií o živé planetě Zemi - vycházející z tzv. [[Hypotéza Gaia|hypotézy Gaia]].
Organismy aktivně pomáhají vytvářet stabilní podmínek pro svůj život (pozitivní zpětná vazba). Celoplanetární regulace je tak dosaženo srůstáním živé a neživé složky do jediného systému. Druhy a jejich prostředí se vyvíjejí ve vzájemné interakci; evoluce organismů je propojena s evolucí prostředí. Taková autoregulace života a prostředí Země vede k vytváření vědeckých teorií o živé planetě Zemi - vycházející z tzv. [[Hypotéza Gaia|hypotézy Gaia]].
Řádek 57: Řádek 58:


Činčera, J. (2001): [http://info.sks.cz/users/cn/zp/historie.html Největší ekologické katastrofy za posledních 20000 let]. Environmentální informační systémy a humanistická environmentalistika - texty k výuce. Vyšší odborná škola informačních služeb v Praze.
Činčera, J. (2001): [http://info.sks.cz/users/cn/zp/historie.html Největší ekologické katastrofy za posledních 20000 let]. Environmentální informační systémy a humanistická environmentalistika - texty k výuce. Vyšší odborná škola informačních služeb v Praze.
Grygar J. (2004): Kosmické katastrofy. Stabilita životního prostředí na Zemi. Přednáška proslovená v cyklu "Otázky a názory" dne 6. prosince 1994 na ČVUT v Praze. In: Věda a víra,  ALDEBARAN, ISBN 80-903117-2-5.


Härtel, H. (2003): Biologické principy ochrany přírody. In: http://botany.natur.cuni.cz/cz/studium/bioochrana.rtf  
Härtel, H. (2003): Biologické principy ochrany přírody. In: http://botany.natur.cuni.cz/cz/studium/bioochrana.rtf  
2 625

editací

Tyto webové stránky vyžadují pro svou funkci cookies. Používáním těchto webových stránek souhlasíte s použitím souborů cookie

Navigační menu