Toxiny sinic: Porovnání verzí
Řádek 28: | Řádek 28: | ||
=== Mikrocystiny === | === Mikrocystiny === | ||
Byly izolovány ze zástupců rodů planktonních, bentických i půdních sinic rodů ''Anabaena, Microcystis, Oscillatoria (Planktothrix), Nostoc, Anabaenopsis, Hapalosiphon'', aj. Jedná se o cyklické heptapeptidy. Je známo přes 60 strukturních variant s molekulovou hmotností 909 - 1115. Ačkoli mnoho cyanobakterií produkuje souběžně několik mikrocystinů, v určitém kmenu obvykle dominují jen jedna nebo dvě strukturní varianty. Většina mykrocystinů je poměrně hydrofilní, ve vodě dobře rozpustná a netěkavá. Mykrocystiny jsou velmi stabilní, odolné vůči chemické hydrolýze i mnoha peptidázám. Jsou ale odbourávány řadou baktérií, vyskytujících se běžně ve vodách.<sup>[2]</sup> | Byly izolovány ze zástupců rodů planktonních, bentických i půdních sinic rodů ''Anabaena, Microcystis, Oscillatoria (Planktothrix), Nostoc, Anabaenopsis, Hapalosiphon'', aj. Jedná se o cyklické heptapeptidy. Je známo přes 60 strukturních variant s molekulovou hmotností 909 - 1115. Ačkoli mnoho cyanobakterií produkuje souběžně několik mikrocystinů, v určitém kmenu obvykle dominují jen jedna nebo dvě strukturní varianty. Většina mykrocystinů je poměrně hydrofilní, ve vodě dobře rozpustná a netěkavá. Mykrocystiny jsou velmi stabilní, odolné vůči chemické hydrolýze i mnoha peptidázám. Jsou ale odbourávány řadou baktérií, vyskytujících se běžně ve vodách.<sup>[2]</sup> Mikrocystiny můžeme považovat za tradiční toxiny sinic, ačkoliv jejich účinky, toxikokinetika a environmentální osud nebyly dosud uspokojivě prostudovány. Identifikována také doposud nebyla jejich přirozená biologická funkce, což je vzhledem k množství, které sinice syntetizují - až 1% sušiny - stále velmi zajímavá otázka. | ||
=== Nodularin === | === Nodularin === | ||
Jedná se o cyklický pentapeptidový toxin ze sinice Nodularia spumigena.<sup>[6]</sup> Aktivní inhibitor eukaryotních protein serine/threonine fosfatáz 1 a 2A.<sup>[3]</sup> Iniciálním poškozením je strukturní dezorganizace jater, nekróza hepatocytů (centrilobulární nekróza) a rozšiřující se krvácení. Hepatocyty vykazují strukturní deformaci. Mechanismus působení na buněčné úrovni je shodný s mikrocystinem - spečcifická inhibice fosfatáz 1 a 2A dosahuje až dvojnásobné intenzity. Je potvrzena také prokarcinogenní aktivita.<sup>[6]</sup> | Jedná se o cyklický pentapeptidový toxin ze sinice Nodularia spumigena.<sup>[6]</sup> Aktivní inhibitor eukaryotních protein serine/threonine fosfatáz 1 a 2A.<sup>[3]</sup> Iniciálním poškozením je strukturní dezorganizace jater, nekróza hepatocytů (centrilobulární nekróza) a rozšiřující se krvácení. Hepatocyty vykazují strukturní deformaci. Mechanismus působení na buněčné úrovni je shodný s mikrocystinem - spečcifická inhibice fosfatáz 1 a 2A dosahuje až dvojnásobné intenzity. Je potvrzena také prokarcinogenní aktivita.<sup>[6]</sup> |
Verze z 8. 6. 2009, 08:13
Úvod
Toxické látky sinic a řas jsou celosvětovm problémem, ale v ČR je jim zatím věnována jen malá pozornost. Zahraniční epidemiologické i naše laboratorní studie prokázaly teratogenní vliv cyanotoxinů, hepatotoxické, embryotoxické, imunotoxické, neurotoxické, dermatotoxické a další efekty cyanotoxinů na zdraví obyvatel a vodních organismů.[1] Toxiny sinic jsou látky sekundárního metabolismu. Srovnáme-li je s ostatními přírodními toxiny, jsou toxičtější než toxiny vyšších rostlin a hub, avšak jsou méně toxické než bakteriální toxiny.[3]
Uznávané členění cyanotoxinů
Cyanotoxiny se v současné době člení
- dle chemické struktury
- alkaloidy
- cyklické a lineární peptidy
- lipopolysacharidy
- dle biologické aktivity (metod biodetekce)
- cytotoxiny
- biotoxiny
Další uznávané členění cyanotoxinů dle metod biodetekce - konkrétně dle mechanismů účinku toxinů rozeznává nejdůležitější toxické metabolity sinic:
- hepatotoxiny
- neurotoxiny
- imunotoxiny a imunomodulanty
- mutageny a genotoxiny
- embryotoxiny
- cytotoxiny, lipopolysacharidy
- dermatotoxiny
[1]
Přehled cyanotoxinů
Mikrocystiny
Byly izolovány ze zástupců rodů planktonních, bentických i půdních sinic rodů Anabaena, Microcystis, Oscillatoria (Planktothrix), Nostoc, Anabaenopsis, Hapalosiphon, aj. Jedná se o cyklické heptapeptidy. Je známo přes 60 strukturních variant s molekulovou hmotností 909 - 1115. Ačkoli mnoho cyanobakterií produkuje souběžně několik mikrocystinů, v určitém kmenu obvykle dominují jen jedna nebo dvě strukturní varianty. Většina mykrocystinů je poměrně hydrofilní, ve vodě dobře rozpustná a netěkavá. Mykrocystiny jsou velmi stabilní, odolné vůči chemické hydrolýze i mnoha peptidázám. Jsou ale odbourávány řadou baktérií, vyskytujících se běžně ve vodách.[2] Mikrocystiny můžeme považovat za tradiční toxiny sinic, ačkoliv jejich účinky, toxikokinetika a environmentální osud nebyly dosud uspokojivě prostudovány. Identifikována také doposud nebyla jejich přirozená biologická funkce, což je vzhledem k množství, které sinice syntetizují - až 1% sušiny - stále velmi zajímavá otázka.
Nodularin
Jedná se o cyklický pentapeptidový toxin ze sinice Nodularia spumigena.[6] Aktivní inhibitor eukaryotních protein serine/threonine fosfatáz 1 a 2A.[3] Iniciálním poškozením je strukturní dezorganizace jater, nekróza hepatocytů (centrilobulární nekróza) a rozšiřující se krvácení. Hepatocyty vykazují strukturní deformaci. Mechanismus působení na buněčné úrovni je shodný s mikrocystinem - spečcifická inhibice fosfatáz 1 a 2A dosahuje až dvojnásobné intenzity. Je potvrzena také prokarcinogenní aktivita.[6]
Anatoxin
Toxin má charakter alkaloidu. Je silným depolarizujícím agens na nervosvalové ploténce, agonista nACha-receptorů. Je vysoce toxický při i.p. podání. Zdrojem látky je především Anabaena[6], dále Oscillatoria, Aphanizomenon, Mycrocystis, Cylindrospermum[2]. Klinické symptomy otravy u myší se dostavují po velmi krátké době latence (2 min) jako namáhavé dýchání, progresivní paralýza končetin, břišní dýchání, silné křeče, smrt zástavou dechu během 15 min. Podobné projevy intoxikace byly pozorovány i u větších zvířat.[6]
Saxitoxin
Jde o purinový derivát[6], guanidinový alkaloid[2] neurotoxin[6]. Toxiny saxinového typu způsobují relaxaci hladké svaloviny cév, depresi akčního potenciálu srdečního svalu a inhibici přenosu axonálního impulsu prostřednictvím blokování sodíkového kanálu. Jsou schopny blokovat a snižovat vstup sodíku do buňky.[6] Cylindrospermopsin je schopen inhibovat proteosyntézu a syntézu glutathionu.[2] Klinickým symptomem otravy hospodářských zvířat je porucha motorické koordinace následovaná poléhavostí, neschopností udržet se na končetinách a smrtí zástavou dechu. U člověka nastupují první symptomy velmi rychle (30-200 min od požití toxické látky.[6] Hlavními producenty jsou Cylindrospermopsis raciborskii, Umezaika natans, Aphanizomenon ovalisporium[2], Anabaena circinalis[6].
Cylindrospermopsiny
Jsou to vysoce toxické alkaloidy, jejichž působení nebylo dosud dobře popsáno. Původně byly prokazovány pouze v tropických oblastech (např. Austrálie), nicméně nové studie ukazují jejich výskyt i v Evropě (včetně např. Maďarska nebo Německa). Mohou být produkovány jak expanzivními druhy sinic (domácí v tropických a subtropických oblastech, např. Cylindrospermopsis raciborskii), tak i druhy běžnými v našich podmínkách - Aphanizomenon sp.[5]
Aplysiatoxin
Lyngbyatoxin
Jedná se o indolový alkaloid produkovaný zelenou řasou Lyngbya majuscula. Toxin je vysoce zánětlivý, způsobuje puchýře a dermatitidy. Je také výrazným nádorovým promotorem - spouští proteinkinázu C.[4]
Vlastní text stránky Má být dělený do odstavců; lze využít nadpisů různých úrovní Do textu musí být vloženy odkazy na citovanou literaturu a zdroje.
A po vlastním textu stránky mohou být uvedeny následující informace (pokud následují, tak v tomto pořadí a na této úrovni nadpisu)
Témata
Zde by měly být odkazy na další stránky v Enviwiki, které jsou "nedílnou" součástí hlavního tématu. Vyjímečně mohou odkazovat na externí stránky (lépe uvádět v odkazech) Vytvořte seznam témat pomocí hvězdiček
Zdroje
Zde jsou uvedeny zdroje, využité k tvorbě této stránky/hesla. Tvorba seznamu použité literatury a dalších zdrojů je významnou součástí práce s textem. Musí být ve správném formátu - využijte nápovědy pro správné citování.
Odkazy
1.↑ Maršálek, B.: Rozdělení cyanotoxinů - legislativa. Cyanobakterie, sborník semináře, Brno, 2004
2.↑ Bláha, L., Maršálek, B., Babica, P.: Mechanismy toxicity cyanotoxinů a jejich vliv na zdraví obyvatel a vodní ekosystémy. Cyanobakterie, sborník semináře, Brno, 2004
3.↑ http://www.biotox.cz/toxikon/sinice/toxiny.php
4.↑ http://www-cyanosite.bio.purdue.edu/cyanotox/toxins/lyngbyatoxin.html.
5.↑ Bláha, L.: "Tradiční" a "nové" cyanotoxiny ve vodách ČR. Cyanobakterie, sborník semináře, Brno, 2004
6.↑ Hrdina, V.: Přírodní toxiny a jedy. Karolinum, Praha, 2004
Měly by být stručně anotované. Tuto část dělíme na následující podskupiny:
Související stránky
Zde uvádíme stránky Enviwiki, které se stránkou volně souvisejí (jsou důležité pro pochopení širších souvislostí). Tvorba vnitřních Wiki odkazů viz Nápověda.
Externí odkazy
Důležité externí on-line zdroje, které se stránkou volně souvisejí. Citujte správně: bibliografické záznamy elektronických dokumentů.
Literatura
Maršálek, B.: Rozdělení cyanotoxinů - legislativa. Cyanobakterie, sborník semináře, Brno, 2004
Bláha, L., Maršálek, B., Babica, P.: Mechanismy toxicity cyanotoxinů a jejich vliv na zdraví obyvatel a vodní ekosystémy. Cyanobakterie, sborník semináře, Brno, 2004
Bláha, L.: "Tradiční" a "nové" cyanotoxiny ve vodách ČR. Cyanobakterie, sborník semináře, Brno, 2004
Hrdina, V.: Přírodní toxiny a jedy. Karolinum, Praha, 2004
Důležité off-line (tištěné) zdroje, které by měly sloužit k podrobnému studiu tématu. Citujte správně: bibliografické záznamy tradičních dokumentů nebo použijte citačních šablon