Environmentální aspekt v makroekonomii: Porovnání verzí

bez shrnutí editace
Bez shrnutí editace
Řádek 3: Řádek 3:
== Počátky začleňování environmentálního aspektu do makroekonomie a jejích modelů==
== Počátky začleňování environmentálního aspektu do makroekonomie a jejích modelů==
''„Is there not a neglected connection between the environment and the macroeconomics we teach? If there is no such thing as environmental macroeconomis in our textbooks should there be? If so, what would it look like?“
''„Is there not a neglected connection between the environment and the macroeconomics we teach? If there is no such thing as environmental macroeconomis in our textbooks should there be? If so, what would it look like?“
''<ref>(HAYES, 1998, s. 1) cituje Hermana Dalyho</ref>
''<ref>Herman Daly (1991)  in  HEYES, Anthony. A Proposal for Greening of Textbook Macro.:‘IS-LM-EE‘. Discussion Papers in Economics 99/7. Department of Economics, Royal Holloway University of London, revised Feb 2000. [cit. 2010-03-06]. Dostupné z WWW. ‹ http://www.rhul.ac.uk/economics/Research/WorkingPapers/pdf/dpe9907.pdf ›</ref>




Snaha o propojení [http://en.wikipedia.org/wiki/Macroeconomics makroekonomie] s problematikou životního prostředí se začíná objevovat již v sedmdesátých letech dvacátého století. Přičemž  jako jeden z významnějších impulzů, tímto směrem, je často prezentován článek [http://en.wikipedia.org/wiki/Herman_E._Daly Hermana Dalyho], z roku 1991, nazvaný [http://www.jstor.org/pss/3146415 ''Towards an Environmental Macroeconomics'']. K tomuto propojení či propojování docházelo a stále ještě dochází mnoha různými způsoby. Jedním z nich je snaha konfrontovat dosavadní neoklasickou ekonomii se staršími pracemi environmentální ekonomie. Kořeny tohoto přístupu je možné identifikovat u [http://en.wikipedia.org/wiki/Robert_Solow Roberta Solowa], konkrétně pak v jeho článku, z roku 1992, nazvaném [http://dionysus.psych.wisc.edu/Lit/Topics/Environment/Sustainability-Solow.pdf ''An Almost Practical Step Toward Sustainability'']. Tato konfrontace pak ústí v následnou diskuzi problematiky optimálního růstu v dlouhém období ve spojitosti s pojmem dlouhodobě udržitelného rozvoje.<ref>(MUNASINGHE, 2004, s. 3-4)</ref><br />
Snaha o propojení [http://en.wikipedia.org/wiki/Macroeconomics makroekonomie] s problematikou životního prostředí se začíná objevovat již v sedmdesátých letech dvacátého století. Přičemž  jako jeden z významnějších impulzů, tímto směrem, je často prezentován článek [http://en.wikipedia.org/wiki/Herman_E._Daly Hermana Dalyho], z roku 1991, nazvaný [http://www.jstor.org/pss/3146415 ''Towards an Environmental Macroeconomics'']. K tomuto propojení či propojování docházelo a stále ještě dochází mnoha různými způsoby. Jedním z nich je snaha konfrontovat dosavadní neoklasickou ekonomii se staršími pracemi environmentální ekonomie. Kořeny tohoto přístupu je možné identifikovat u [http://en.wikipedia.org/wiki/Robert_Solow Roberta Solowa], konkrétně pak v jeho článku, z roku 1992, nazvaném [http://dionysus.psych.wisc.edu/Lit/Topics/Environment/Sustainability-Solow.pdf ''An Almost Practical Step Toward Sustainability'']. Tato konfrontace pak ústí v následnou diskuzi problematiky optimálního růstu v dlouhém období ve spojitosti s pojmem dlouhodobě udržitelného rozvoje.<ref name="Munasinghe">MUNASINGHE, Mohan. Environmental Macroeconomics-Basic Principles. Munasinghe Institute for Development (MIND). Colombo. Sri Lanka. May 2004. [cit. 2010-03-06]. Dostupné z WWW: ‹ http://www.som.yale.edu/faculty/nok4/files/seminar/Munasinghe.pdf ›</ref><br />
Na přelomu dvacátého a dvacátéhoprvního století dochází k začlenění environmentálních proměnných do některých ze standardních makroekonomických modelů.<ref>(MUNASINGHE, 2004, s. 3-4)</ref>
Na přelomu dvacátého a dvacátéhoprvního století dochází k začlenění environmentálních proměnných do některých ze standardních makroekonomických modelů.<ref name ="Munasinghe">MUNASINGHE, Mohan. Environmental Macroeconomics-Basic Principles. Munasinghe Institute for Development (MIND). Colombo. Sri Lanka. May 2004. [cit. 2010-03-06]. Dostupné z WWW: ‹ http://www.som.yale.edu/faculty/nok4/files/seminar/Munasinghe.pdf ›</ref>
Jakým způsobem konkrétně pak bylo toto v minulosti technicky provedeno, lze demonstrovat na příkladech rozšíření modelu [http://en.wikipedia.org/wiki/IS/LM_model IS-LM] a [http://en.wikipedia.org/wiki/Solow_model Solowova modelu]o environmentální aspekt.
Jakým způsobem konkrétně pak bylo toto v minulosti technicky provedeno, lze demonstrovat na příkladech rozšíření modelu [http://en.wikipedia.org/wiki/IS/LM_model IS-LM] a [http://en.wikipedia.org/wiki/Solow_model Solowova modelu]o environmentální aspekt.


== Začlenění environmentálního aspektu do modelu IS-LM ==
== Začlenění environmentálního aspektu do modelu IS-LM ==
Jako první autor, který začlenil do modelu IS-LM křivku environmentální rovnováhy a rozšířil jej tak na model IS-LM-EE je Anthony Heyes, konkrétně toto poprvé prezentoval ve svém článku, z roku 1998, nazvaném [http://www.rhul.ac.uk/economics/Research/WorkingPapers/pdf/dpe9907.pdf ''A Proposal for Greening of Textbook Macro.: 'IS-LM-EE'''].<ref>(LAWN, 2003, s. 119)</ref>  
Jako první autor, který začlenil do modelu IS-LM křivku environmentální rovnováhy a rozšířil jej tak na model IS-LM-EE je Anthony Heyes, konkrétně toto poprvé prezentoval ve svém článku, z roku 1998, nazvaném [http://www.rhul.ac.uk/economics/Research/WorkingPapers/pdf/dpe9907.pdf ''A Proposal for Greening of Textbook Macro.: 'IS-LM-EE'''].<ref name="Lawn">LAWN, Philip A. Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium' Curve. Australian Economic Papers. 2003. Vol. 42(1). pp.118-134. [cit. 2010-03-08]. Dostupné z WWW: ‹ http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ›</ref>
To jakým způsobem to udělal, pak popisuje mimo jiné i dále analýzu rozšiřuje Philip A. Lawn v článku, z roku 2003, nazvaném [http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ''Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium''']. Přičemž křivka environmentální rovnováhy je zde konstruována takto:
To jakým způsobem to udělal, pak popisuje, mimo jiné i dále analýzu rozšiřuje, Philip A. Lawn v článku, z roku 2003, nazvaném [http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ''Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium''']. Přičemž křivka environmentální rovnováhy je zde konstruována takto:


E= available energy embodied in real output produced (Y)/available energy embodied in resource throughput (T)<ref>(LAWN, 2003, s. 121)</ref>
E= available energy embodied in real output produced (Y)/available energy embodied in resource throughput (T) <ref name="Lawn">LAWN, Philip A. Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium' Curve. Australian Economic Papers. 2003. Vol. 42(1). pp.118-134. [cit. 2010-03-08]. Dostupné z WWW: ‹ http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ›</ref>


E je technologická efektivnost produkce, která nabývá hodnot 0<E<1, Y je reálný výstup (reálné HDP) a T je celková propustnost energie ze zdrojů na vstupu do odpadů na výstupu.
E je technologická efektivnost produkce, která nabývá hodnot 0<E<1, Y je reálný výstup (reálné HDP) a T je celková propustnost energie ze zdrojů na vstupu do odpadů na výstupu.
Řádek 22: Řádek 23:
R je dlouhodobá reálná úroková míra, β je institucionální parametr zachycující do jaké míry jsou náklady spojené s externímy efekty znečišťování a vyčerpávání přírodních zdrojů neseny uživateli těchto zdrojů a znečišťovateli a nabývá hodnot 0≤β≤1, γ je technologický parametr zachycující stav technologického pokroku v oblasti úspory přírodních zdrojů a snižování znečištění, a nabývá hodnot 0≤γ≤1.
R je dlouhodobá reálná úroková míra, β je institucionální parametr zachycující do jaké míry jsou náklady spojené s externímy efekty znečišťování a vyčerpávání přírodních zdrojů neseny uživateli těchto zdrojů a znečišťovateli a nabývá hodnot 0≤β≤1, γ je technologický parametr zachycující stav technologického pokroku v oblasti úspory přírodních zdrojů a snižování znečištění, a nabývá hodnot 0≤γ≤1.


-(dN/dt)=T-sN=(Y/E(R,β,γ))-sN<ref>(LAWN, 2003, s. 122)</ref>
-(dN/dt)=T-sN=(Y/E(R,β,γ))-sN<ref name="Lawn">LAWN, Philip A. Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium' Curve. Australian Economic Papers. 2003. Vol. 42(1). pp.118-134. [cit. 2010-03-08]. Dostupné z WWW: ‹ http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ›</ref>


N je fyzická zásoba přírodního kapitálu, t je čas, s je míra regenerace přírodního kapitálu. V environmentální rovnováze čili na křivce EE (environmental equilibrium) platí:
N je fyzická zásoba přírodního kapitálu, t je čas, s je míra regenerace přírodního kapitálu. V environmentální rovnováze čili na křivce EE (environmental equilibrium) platí:


(dN/dt)=0 ⇒ T=sN<ref>(LAWN, 2003, s. 122)</ref>
(dN/dt)=0 ⇒ T=sN<ref name="Lawn">LAWN, Philip A. Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium' Curve. Australian Economic Papers. 2003. Vol. 42(1). pp.118-134. [cit. 2010-03-08]. Dostupné z WWW: ‹ http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ›</ref>
 
Křivka EE pak reprezentuje takové kombinace reálné úrokové míry a reálného výstupu (reálného HDP), při kterých je dosaženo výše definované environmentální rovnováhy. Podobně jako křivka IS reprezentuje takové kombinace reálné úrokové míry a reálného výstupu (reálného HDP), při kterých je v rovnováze trh zboží a služeb. A jako křivka LM reprezentuje takové kombinace reálné úrokové míry a reálného výstupu (reálného HDP), při kterých je v rovnováze trh peněz. Tímto způsobem je pak model IS-LM rozšířen na model IS-LM-EE, který již určitým způsobem reflektuje environmentální aspekt.<ref name="Lawn">LAWN, Philip A. Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium' Curve. Australian Economic Papers. 2003. Vol. 42(1). pp.118-134. [cit. 2010-03-08]. Dostupné z WWW: ‹ http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ›</ref>


Křivka EE pak reprezentuje takové kombinace reálné úrokové míry a reálného výstupu (reálného HDP), při kterých je dosaženo výše definované environmentální rovnováhy. Podobně jako křivka IS reprezentuje takové kombinace reálné úrokové míry a reálného výstupu (reálného HDP), při kterých je v rovnováze trh zboží a služeb. A jako křivka LM reprezentuje takové kombinace reálné úrokové míry a reálného výstupu (reálného HDP), při kterých je v rovnováze trh peněz. Tímto způsobem je pak model IS-LM rozšířen na model IS-LM-EE, který již určitým způsobem reflektuje environmentální aspekt.<ref>(LAWN, 2003, s. 119-125)</ref>


== Začlenění environmentální aspektu do Solowova modelu ==
== Začlenění environmentální aspektu do Solowova modelu ==
Rozšíření Solowova modelu o environmentální aspekt provedli William A. Brock a M. Scott Taylor, v roce 2004, v článku nazvaném [http://www.nber.org/papers/w10557.pdf?new_window=1 ''The Green Solow Model''], konkrétně pak tímto způsobem:
Rozšíření Solowova modelu o environmentální aspekt provedli William A. Brock a M. Scott Taylor, v roce 2004, v článku nazvaném [http://www.nber.org/papers/w10557.pdf?new_window=1 ''The Green Solow Model''], konkrétně pak tímto způsobem:


Y=F(K,BL), K ̇ =sY-δK<ref>(BROCK a TAYLOR, 2004, s. 10)</ref>
Y=F(K,BL), K ̇ =sY-δK<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


L ̇ =nL, B ̇ =gB<ref>(BROCK a TAYLOR, 2004, s. 10)</ref>
L ̇ =nL, B ̇ =gB<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


Y je reálný výstup, K je kapitál, L je práce, B je práci rozšiřující technologický pokrok, K ̇  je přírustek kapitálu v čase, s je míra úspor, δ je míra znehodnocení kapitálu, L ̇ je přírustek práce v čase, n je růst populace, B ̇  je přírustek práci rozšiřujícího technologického pokroku v čase a g je míra práci rozšiřujícího technologického pokroku.
Y je reálný výstup, K je kapitál, L je práce, B je práci rozšiřující technologický pokrok, K ̇  je přírustek kapitálu v čase, s je míra úspor, δ je míra znehodnocení kapitálu, L ̇ je přírustek práce v čase, n je růst populace, B ̇  je přírustek práci rozšiřujícího technologického pokroku v čase a g je míra práci rozšiřujícího technologického pokroku.


pollution emitted=pollution created-pollution abated<ref>(BROCK a TAYLOR, 2004, s. 10)</ref>
pollution emitted=pollution created-pollution abated<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


E=ΩF-ΩA(F,F<sup>A</sup>)<ref>(BROCK a TAYLOR, 2004, s. 10)</ref>
E=ΩF-ΩA(F,F<sup>A</sup>)<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


E=ΩF[1-A(1,F<sup>A</sup>/F)]<ref>(BROCK a TAYLOR, 2004, s. 10)</ref>
E=ΩF[1-A(1,F<sup>A</sup>/F)]<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


E=ΩFa(θ)<ref>(BROCK a TAYLOR, 2004, s. 10)</ref>
E=ΩFa(θ)<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


where a(θ)=[1-A(1,F<sup>A</sup>/F)]  and θ=F<sup>A</sup>/F<ref>(BROCK a TAYLOR, 2004, s. 10)</ref>
where a(θ)=[1-A(1,F<sup>A</sup>/F)]  and θ=F<sup>A</sup>/F<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


E je emitované znečištění, a "každá jednotka ekonomické aktivity F pak vytváří Ω jednotek znečištění jako vedlejší produkt k výstupu"<ref>(BROCK a TAYLOR, 2004, s. 11) přičemž v tomto Brock a Taylor navazují na článek COPELAND a TAYLOR. North-South Trade and the Global Environment. Quarterly Journal of Economics. 1994. 109:775-87</ref>, F<sup>A</sup> je snaha ekonomiky zamezit znečištění, θ je podíl ekonomické aktivity věnované zamezení znečištění k celkové ekonomické aktivitě a a(θ) je funkce zamezení znečištění (a(0)=1), přičemž a(θ) defakto říká kolik procent z vytvořeného znečištění (pollution created) je emitované znečištění (pollution emitted).
E je emitované znečištění, a "každá jednotka ekonomické aktivity F pak vytváří Ω jednotek znečištění jako vedlejší produkt k výstupu"<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>, F<sup>A</sup> je snaha ekonomiky zamezit znečištění, θ je podíl ekonomické aktivity věnované zamezení znečištění k celkové ekonomické aktivitě a a(θ) je funkce zamezení znečištění (a(0)=1), přičemž a(θ) defakto říká kolik procent z vytvořeného znečištění (pollution created) je emitované znečištění (pollution emitted).


Y =[1-θ]F<ref>(BROCK a TAYLOR, 2004, s. 11)</ref>
Y =[1-θ]F<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


Y je reálný výstup, pokud bereme v úvahu snahu zamezit znečištění.
Y je reálný výstup, pokud bereme v úvahu snahu zamezit znečištění.


X ̇ =E-ηX<ref>(BROCK a TAYLOR, 2004, s. 11)</ref>
X ̇ =E-ηX<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


X ̇  je přírustek (stavu) zásoby znečištění v ekonomice v čase, X je (stav) zásoba znečištění v ekonomice, η je přirozená míra regenerace(η>0). Následující tři rovnice pak tvoří Solowův model obohacený o environmentální aspekt.
X ̇  je přírustek (stavu) zásoby znečištění v ekonomice v čase, X je (stav) zásoba znečištění v ekonomice, η je přirozená míra regenerace(η>0). Následující tři rovnice pak tvoří Solowův model obohacený o environmentální aspekt.


y =f(k)[1-θ]<ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
y =f(k)[1-θ]<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


k ̇ =sf(k)[1-θ]-[δ+n+g]k<ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
k ̇ =sf(k)[1-θ]-[δ+n+g]k<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


e=f(k)Ωa(θ)<ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
e=f(k)Ωa(θ)<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


where k= K/BL,y=Y/BL,e=E/BL  and f(k)=F(k,1)<ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
where k= K/BL,y=Y/BL,e=E/BL  and f(k)=F(k,1)<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>
   
   
Ekonomika se ve stálém stavu pohybuje podél tzv.: [http://econ161.berkeley.edu/macro_online/gt_primer.pdf Balanced Growth Path] .<ref>(ANON., s. 4)</ref>
Ekonomika se ve stálém stavu pohybuje podél tzv.: [http://econ161.berkeley.edu/macro_online/gt_primer.pdf Balanced Growth Path] .<ref name="Anon.">ANON. Solowův model. [cit. 2010-04-21]. Dostupné z WWW: ‹ http://www.libinst.cz/hp482/solowuv_model.pdf ›</ref>


g<sub>y</sub>=g<sub>k</sub>=g<sub>c</sub>=g>0<ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
g<sub>y</sub>=g<sub>k</sub>=g<sub>c</sub>=g>0<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


Podél Balanced Growth Path roste produkt na hlavu, kapitál na hlavu i spotřeba na hlavu tempem práci rozšiřujícího technologického pokroku(g>0).
Podél Balanced Growth Path roste produkt na hlavu, kapitál na hlavu i spotřeba na hlavu tempem práci rozšiřujícího technologického pokroku(g>0).


G<sub>E</sub>=g+n-g<sub>A</sub><ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
G<sub>E</sub>=g+n-g<sub>A</sub><ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


G<sub>E</sub> je míra růstu agregátních emisí, která může být podél Balanced Growth Path jak kladná tak i záporná, g+n je míra růstu agregátního výstupu a g<sub>A</sub> je exogení technologický pokrok ve snižování znečištění (g<sub>A</sub>>0). Konstantní růst X podél Balanced Growth Path nastává právě tehdy když:
G<sub>E</sub> je míra růstu agregátních emisí, která může být podél Balanced Growth Path jak kladná tak i záporná, g+n je míra růstu agregátního výstupu a g<sub>A</sub> je exogení technologický pokrok ve snižování znečištění (g<sub>A</sub>>0). Konstantní růst X podél Balanced Growth Path nastává právě tehdy když:


G<sub>X</sub>=G<sub>E</sub><ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
G<sub>X</sub>=G<sub>E</sub><ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


G<sub>X</sub> je míra růstu zásoby znečištění.
G<sub>X</sub> je míra růstu zásoby znečištění.


g>0 and g<sub>A</sub>>g+n<ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
g>0 and g<sub>A</sub>>g+n<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


Pomocí těchto dvou nerovnic je pak definován udržitelný růst. Ke kterému dochází pokud technologický pokrok ve snižování znečištění převýší míru růstu agregátního výstupu (↓G<sub>E</sub>→↓G<sub>X</sub>).
Pomocí těchto dvou nerovnic je pak definován udržitelný růst. Ke kterému dochází pokud technologický pokrok ve snižování znečištění převýší míru růstu agregátního výstupu (↓G<sub>E</sub>→↓G<sub>X</sub>).


''„Sustainable growth defined as balanced growth path generateing rising consumption per capita and improveing environment. ... Technological progress in goods production is necessary to generate per capita income growth. Technological progress in abatement must exceed growth in aggregate output in order for pollution to fall an environment to improve.“''<ref>(BROCK a TAYLOR, 2004, s. 12)</ref>
''„Sustainable growth defined as balanced growth path generateing rising consumption per capita and improveing environment. ... Technological progress in goods production is necessary to generate per capita income growth. Technological progress in abatement must exceed growth in aggregate output in order for pollution to fall an environment to improve.“''<ref name="BROCK, William A. a TAYLOR, M. Scott">BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›</ref>


== Závěr ==
== Závěr ==
Řádek 107: Řádek 109:


DELONG, Brad. Growth: An Introduction. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://econ161.berkeley.edu/macro_online/ ›<br>
DELONG, Brad. Growth: An Introduction. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://econ161.berkeley.edu/macro_online/ ›<br>
<br>
1. HEYES, Anthony. A Proposal for Greening of Textbook Macro.:‘IS-LM-EE‘. Discussion Papers in Economics 99/7. Department of Economics, Royal Holloway University of London, revised Feb 2000. [cit. 2010-03-06]. Dostupné z WWW. ‹ http://www.rhul.ac.uk/economics/Research/WorkingPapers/pdf/dpe9907.pdf ›
2. - 3. &nbsp;MUNASINGHE, Mohan. Environmental Macroeconomics-Basic Principles. Munasinghe Institute for Development (MIND). Colombo. Sri Lanka. May 2004. [cit. 2010-03-06]. Dostupné z WWW: ‹ http://www.som.yale.edu/faculty/nok4/files/seminar/Munasinghe.pdf ›
4. - 8. LAWN, Philip A. Environmental Macroeconomics: Extending the IS-LM Model to Include an 'Environmental Equilibrium' Curve. Australian Economic Papers. 2003. Vol. 42(1). pp.118-134. [cit. 2010-03-08]. Dostupné z WWW: ‹ http://econpapers.repec.org/RePEc:bla:ausecp:v:42:y:2003:i:1:p:118-134 ›
9. - 22. a 24. - 28. BROCK, William A. a TAYLOR, M. Scott. The Green Solow Model. NBER Working Paper. 2004. No. 10557. pp. 1-60. [cit. 2010-03-22]. Dostupné z WWW: ‹ http://www.nber.org/papers/w10557.pdf?new_window=1 ›
23. ANON. Solowův model. [cit. 2010-04-21]. Dostupné z WWW: ‹ http://www.libinst.cz/hp482/solowuv_model.pdf ›


SOLOW, Robert. An Almost Practical Step Toward Sustainability. Resources Policy [online]. 1992. Vol. 19 (3), pp. 162-72. [cit. 2010-03-06]. Dostupné z WWW: ‹ http://dionysus.psych.wisc.edu/Lit/Topics/Environment/Sustainability-Solow.pdf ›  
SOLOW, Robert. An Almost Practical Step Toward Sustainability. Resources Policy [online]. 1992. Vol. 19 (3), pp. 162-72. [cit. 2010-03-06]. Dostupné z WWW: ‹ http://dionysus.psych.wisc.edu/Lit/Topics/Environment/Sustainability-Solow.pdf ›  
45

editací